Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

General Information

- Location: Ashburn, VA 12 miles NW of Dulles International \bullet
- **Project Type: 5 Story, Multi-Tenant Office Building**
- Project Size: ~125,000 SF \bullet
- **Architect: The M Group Architects**
- **Structural Engineer: Haynes Whaley Associates** ۲
- **Owner: Toll Brothers Commercial**
- **Project Delivery Method: Guaranteed Maximum Price** \bullet
- **Project Duration: September 2006 July 2007**

Introduction

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Gravity System

- 3500 psi
- Composite action achieved through the use of shear studs
- W shape steel beams/columns \bullet
- Square spread footings with perimeter strip footing, f'c = 4000

psi

- Typical bay sizes
 - 40'-0"x30'-0" exterior bays
 - 26'-2"x30'-0" interior bays

Existing Structural System

Belmont Executive Center, Building A

 $6 \frac{1}{4}$ " lightweight concrete on 3" composite metal deck, f'c =

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Lateral System

- 4 braced frames \bullet
- 3 in the North-South direction \bullet
- **1** in East-West direction \bullet

Existing Structural System

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Presentation Outline

Introduction

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Goals

- **1.** Design structure using post-tensioned concrete
- 2. Maintain long exterior spans
- Minimize the floor depth 3.
- Determine architectural impacts of new system 4.
- 5. Compare cost and schedules of the original vs. the proposed

system

- Solution
- Gravity System: One-way, post-tensioned slab supported by

Lateral System: Concrete moment frames

Proposal

Belmont Executive Center, Building A

wide, shallow post-tensioned girders

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Gravity System

Concrete

- Normal weight concrete \bullet
- f'c = 5000 psi \bullet

PT Tendons

 $\frac{1}{2}$ "Ø, 7-wire strands

Design of Post-Tensioned Slab

Belmont Executive Center, Building A

Post-Tensioned Sla

Clear Cover

Size of Conventional Rei

Balanced Dead

Precompression

Location of Tendon(s

^f To avoid extreme upward o

To avoid cracking due to create t

^ж To avoid reinforcement cor

Advisor: Professor M. Kevin Parfitt

Design Parameters					
	1.0"				
nforcement	#4 Bars				
oad	50%-100% [£]				
Stress	≤ 300psi ¥				
) Anchor	1⁄4*L				
amber					
еер					
ngestion					

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Gravity System

- **Design of One-Way Post-Tensioned Slab**
 - **Design Zones**
 - Slab divided into different areas based on:
 - 1. Number of spans
 - 2. Length of Spans
 - 4 individual zones

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

- **Design of Zone 2**
- Introduce Normally Reinforced Concrete Beam
 - 18"x20" •
 - f'c = 5000 psi •

Design of Gravity System

Design of One-Way Post-Tensioned Slab

- (5) #9's flexural reinforcement
- (2) legs of #3 @ 8" shear reinforcement

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Zone 2

- Live load reductions per ASCE 7-05 § 4.8
- Preliminary Size
 - L/45 continuous spans: (30*12) / 45 \rightarrow h = 8" •
- f'c = 5000 psi •
- Fe = 28.8 kips/ft (2 tendons per foot width)
- Increased span 2 tendon height at mid-distance due to
 - high tension stress at initial loading

Design of Gravity System

- **Design of One-Way Post-Tensioned Slab**

(1) #4 per foot; T – over supports, B - midspan

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

- Zone 1, 3, and 4
- Fe = 28.8 kips/ft in exterior bays
- Fe = 20.9 kips/ft in interior bays
- **Tendon heights:**
 - At supports: 7.0" •
 - •
- **Deflections were not an issue**
 - Max deflection = 0.53" in exterior spans •
- •

Design of Gravity System

Design of One-Way Post-Tensioned Slab

At mid-span: 1.0"

#4 @ 12" perpendicular to tendons for S&T

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

- **Design of Gravity System**
- Design of Lateral System
- Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

- Banded tendons to provide high PT force
 - 7 tendons per 2 ³/₄" conduit

Method

- Reduce tension at midspan in exterior bays by decreasing
 - drape eccentricity in the middle span
- Reduce bottom fiber tension at supports by decreasing
 - tendon height over columns

Design of Gravity System

Design of Post-Tensioned Girders

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Typical Girder

- Preliminary Size: 60" x 20"
- PT force = 600 kips
- **Required number of tendons = 23**
- Max deflection = 0.18" in exterior spans

Design of Gravity System

- **Design of Post-Tensioned Girders**

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

- **Design of Gravity System**
- Design of Lateral System
- Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

- Narrow cross section increased the precompression stress \bullet
 - much greater than 300 psi
- Extend tendon group entirely continuously through the girder
- Provide tendons in exterior bays to balance dead load
 - Run off extra tendons through slab openings
- Required PT Force = 500/216/600 kips
- **Required Number of Tendons = 19/9/23** \bullet
- Maximum deflection in span 3 = 0.19"

Design of Gravity System

- **Design of Post-Tensioned Girders**
- Design of Girder Adjacent to Elevator Openings

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Desig	gn of Conc
•	9 in north
•	2 in east-v
Defle	ction/Story
•	L/400 – w
•	0.015*h _{sx} ·
ETAB	S Model
•	Property

•

Design of Lateral System

- crete Moment Frames
- -south direction
- west direction
- **Drift Limitations**
- ind
- seismic
- Modifiers
- 0.70 columns
- 0.40 beams

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Concrete Moment Frames

Lateral Displacement Due to Wind								
	Lateral Displacement/Story Drift in X Direction							
Floor	Height (ft)	Displacement (in)	Allowable Displacement (in)*	Story Drift (in)	Allowable Story Drift (in)*			
RF	68.32	0.921	2.05	0.05	0.40			
5	54.99	0.868	1.65	0.10	0.40			
4	41.66	0.772	1.25	0.14	0.40			
3	28.33	0.637	0.85	0.19	0.40			
2	15	0.444	0.45	0.44	0.45			
		Latera	l Displacement/Story Drift in Y I	Direction				
Floor	Height (ft)	Displacement (in)	Allowable Displacement (in)*	Story Drift (in)	Allowable Story Drift (in)*			
RF	68.32	1.40	2.05	0.18	0.40			
5	54.99	1.22	1.65	0.21	0.40			
4	41.66	1.01	1.25	0.26	0.40			
3	28.33	0.751	0.85	0.31	0.40			
2	15	0.442	0.45	0.44	0.45			

	Lateral Displacement Due to Wind								
	Lateral Displacement/Story Drift in X Direction								
	Floor	Height (ft)	Displacement (in)	Allowable Displacement (in)*	Story Drift (in)	Allowable Story Drift (in)*			
	RF	68.32	0.921	2.05	0.05	0.40			
	5	54.99	0.868	1.65	0.10	0.40			
	4	41.66	0.772	1.25	0.14	0.40			
	3	28.33	0.637	0.85	0.19	0.40			
	2	15	0.444	0.45	0.44	0.45			
			Latera	l Displacement/Story Drift in Y [Direction				
	Floor	Height (ft)	Displacement (in)	Allowable Displacement (in)*	Story Drift (in)	Allowable Story Drift (in)*			
	RF	68.32	1.40	2.05	0.18	0.40			
j	RF 5	68.32 54.99	1.40 1.22	2.05 1.65	0.18	0.40			
	RF 5 4	68.32 54.99 41.66	1.40 1.22 1.01	2.05 1.65 1.25	0.18 0.21 0.26	0.40 0.40 0.40			
	RF 5 4 3	68.32 54.99 41.66 28.33	1.40 1.22 1.01 0.751	2.05 1.65 1.25 0.85	0.18 0.21 0.26 0.31	0.40 0.40 0.40 0.40			
	RF 5 4 3 2	68.32 54.99 41.66 28.33 15	1.40 1.22 1.01 0.751 0.442	2.05 1.65 1.25 0.85 0.45	0.18 0.21 0.26 0.31 0.44	0.40 0.40 0.40 0.40 0.45			

	Seismic Story Drift								
	s	tory Drift - X Di	rection			S	tory Drift - Y Dir	rection	_
Floor	Story Height	Displacement	Story Drift	Allowable Drift*	Floor	Story Height	Displacement	Story Drift	Allowable Drift*
RF	13.33	3.04	0.35	3.2	RF	13.33	0.589	0.026	3.2
5	13.33	2.69	0.44	3.2	5	13.33	0.563	0.055	3.2
4	13.33	2.25	0.55	3.2	4	13.33	0.508	0.083	3.2
3	13.33	1.70	0.7	3.2	3	13.33	0.425	0.126	3.2
2	15	1.00	1.00	3.6	2	15	0.299	0.299	3.6
* Limited									

Design of Lateral System

Torsion : Threshold 54.4 ft-kips, Tu = 25.3 ft-kips

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Lateral System

Design of Typical Interior Column

Axial Load at Top of Column					
Dead Load Live Load					
1064 kips	352 kips				
Moments at Top of Column					
Seismic Wind					
82.3 ft-kips	128 ft-kips				

Load Combination: 1.2D + 1.6W + L

Pu	Mu
1651 ft-kips	205 ft-kips

Summary: f'c = 6000 psi, As = (8) # 10's $\rightarrow \rho$ = 1.76% \leq 2.00%

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Gravity System

Belmont Executive Center, Building A

Construction Management Breadth

	Post-Tensioned Structure							
	Ba	re Material	Bare Labor	Bare Equipment	Bare Total			
	\$	47,806.46	\$120,116.04	\$-	\$ 212,626.50			
	\$	73,170.58	\$ 19,391.44	\$-	\$ 92,562.03			
	\$	19,207.93	\$ 29,909.49	\$ 48.00	\$ 49,666.22			
	\$	131,523.38	\$-	\$-	\$ 131,523.38			
	\$	-	\$ 10,192.37	\$ 4,352.92	\$ 14,545.29			
e	Ş	-	\$ 4,826.00	\$ 1,524.00	\$ 6,350.00			
	\$	271,708.36	\$184,435.34	\$ 5,924.92	\$ 507,273.42			
	\$	507,273.42						

Steel Structure									
Туре	Ва	re Material	Bare Labor		E	Bare Equipment		Bare Total	
Structural Steel	\$	259,979.09	\$	18,381.13	\$	4,854.64	\$:	282,851.36	
Reinforcement	\$	5,204.46	\$	4,744.72	\$	-	\$	9,949.18	
Concrete	\$	61,806.06	\$	-	\$	-	\$	61,806.06	
Placing Concrete	\$	-	\$	4,413.24	\$	1,883.70	\$	6,296.94	
Finishing Concrete	\$	6.35	\$	-	\$	4,826.00	\$	1,524.00	
Sub Total	\$	326,995.96	\$	27,539.09	\$	11,564.34	\$3	362,427.54	
Total	\$	362,427.54							

	Cost Comparison Per Floor				
	Steel	PT Concrete			
Total Cost	\$367,000.00	\$501,000.00			
Cost per SF	\$14.45	\$19.72			

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

- Design of Gravity System
- Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Gravity System

- Schedule Comparison
 - **Steel Structure**
 - 35 piece of steel per day
 - Erect beams after decking two floors below is installed
 - **Post-Tensioned Structure**
 - Divided slab into 3 phases
 - Sequenced trades to accelerate schedule

Construction Management Breadth

Construction Time				
Steel	Concrete			
50 days	70 days			

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

- Design of Gravity System
- Design of Lateral System
- Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Conclusion

- Long exterior spans were maintained
- The floor depth was minimized
- PT system took longer to construct and cost more
- Recommendation
- Because the construction time and cost increased, the original structure design is most efficient.
- Switching to PT concrete would not be a viable solution \bullet

Design of Gravity System

Advisor: Professor M. Kevin Parfitt

Belmont Executive Center, Building A

Exiting Structural System

Proposal

- Design of Gravity System
- Design of Lateral System
- Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Acknowledgments

- **Toll Brothers Commercial** \bullet
- The M Group Architects
 - David Belgin
- Haynes Whaley Associates
 - Dustin Wakefield
- Holbert Apple and Associates
 - Richard Apple
- All AE faculty \bullet
- Especially friends and family members for their support.

Design of Gravity System

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt

Exiting Structural System

Proposal

Design of Gravity System

Design of Lateral System

Construction Breadth

Conclusion

Nicholas L. Ziegler: Structural Option

Design of Gravity System

Belmont Executive Center, Building A

Advisor: Professor M. Kevin Parfitt